# LXD31K4 quad channel MIMO FMC module User manual



Document title: LXD31K4 quad channel MIMO FMC module User manualDocument type: DMDocument number: 005Document revision: 1.0Document classification: Public



This document is the property of Logic-X B.V. and may not be copied nor communicated to a third party without the written permission of Logic-X B.V.



Page is intentionally left blank



# Table of Contents

|    | DM005 -    |                                                          | - 3 - |
|----|------------|----------------------------------------------------------|-------|
|    |            | auad channel MIMO FMC <u>www.logic-x.eu</u><br>er manual |       |
| 13 | B EMO      | <u></u>                                                  | 24    |
| 12 | 2 Safe     | ty                                                       | 24    |
|    | 11.6       | Monitor 2                                                | 24    |
|    | 11.5       | Monitor 1                                                | 24    |
|    | 11.4       | Monitoring                                               | 23    |
|    | 11.3       | Cooling                                                  | 23    |
|    | 11.2       | Temperature                                              |       |
|    | 11.1       | Requirements and handling instructions                   | 23    |
| 11 | 1 Hea      | Ith monitoring                                           |       |
|    | 10.1       | Power supply control                                     |       |
| 1( | ) Pow      | er Supply                                                | 22    |
|    | 9.2        | FPGA SPI interface                                       |       |
|    | 9.1        | Data format multiplexed data stream                      | 20    |
| 9  | Mul        | tiplexing, Sync and external IO                          | 20    |
|    | 8.2        | External clock                                           | 19    |
|    | 8.1.3      | 3 PLL loop filter design                                 | 19    |
|    | 8.1.2      | 2 External reference clock                               | 18    |
|    | 8.1.1      | Local reference clock                                    | 18    |
|    | 8.1        | Local clock generator                                    |       |
| 8  |            | k tree                                                   |       |
| 7  |            | rnal IO and synchronisation                              |       |
| 6  |            | Interface                                                |       |
| 5  | I2C        | Interface                                                |       |
|    | 4.4        | Output frequency response                                |       |
|    | 4.3        | Input frequency response                                 |       |
|    | 4.2        | DC coupled                                               |       |
| -  | 4.1        | AC coupled                                               |       |
| 4  |            | log input and output                                     |       |
|    | 3.7        | Main Characteristics                                     |       |
|    | 3.6        | VREF Support                                             |       |
|    | 3.5        | VIO_B_M2C Support                                        |       |
|    | 3.4        | I/O Standard Support                                     |       |
|    | 3.3        | Gigabit transceiver connections                          |       |
|    | 3.1<br>3.2 | Utility connections                                      |       |
| 3  | гмс<br>3.1 | LA, HA and HB connections                                | -     |
| 2  | 2.2        | Front panel design                                       |       |
|    | 2.1.1      |                                                          |       |
| 2  |            | hanical design                                           |       |
| 1  |            | eral Description                                         |       |
|    | ~          |                                                          | _     |



| 14 Board support package          | 25 |
|-----------------------------------|----|
| Appendix A: Enable LXD31K4 powers | 26 |
| Appendix B: PLL configuration     |    |
| Appendix C: ADC configuration     | 27 |
| Appendix D: DAC configuration     |    |
| Appendix E: FPGA IO training      |    |
|                                   |    |

# **1** General Description

Using off-the-shelf FMC and FPGA products enables system designers to get their products to market faster. The LXD31K4 with its 4 analog input channels and 4 analog output channels will easily fit into, among others, the following systems: MIMO, Wireless communication transceivers, software defined radio, medical equipment and test and instrumentation.

For its analog input the LXD31K4 uses the AD9652 from analog devices that offers 16bits resolution at a sample rate of 310Msps.At the analog output the AD9142A from analog devices can convert 16bit data at a maximum sample rate of 1600 Msps. At the front end the LXD31K4 offers the choice for AC or DC coupled inputs. All the digital data interfaces are LVDS and requires a high pin count FMC connector.

The LXD31K4 allows flexible control on clock source, analog input gain, and offset correction through serial communication busses. Furthermore, the card is equipped with power supply and temperature monitoring and offers several power-down modes to switch off unused functions, reducing system level power.



Figure 1: LXD31K4 block diagram



### 2 Mechanical design

The board design is mechanically compliant to the Vita 57.1 (FMC) specification.

#### 2.1.1 Cooling

Optionally the board is delivered with a heatsink that is violating the maximum component height of 4.7mm. Most FMC carrier products on the market today won't have a conflict. Please contact Logic-X for custom heatsink and conduction cooling solutions. Without heat sink a forced airflow is required to cool the product

### 2.2 Front panel design



Figure 2: LXD31K4 front panel

| Frontpanel marking | Connects to      | Frontpanel<br>marking | Connects to     |
|--------------------|------------------|-----------------------|-----------------|
| А                  | DAC channel 0    | E                     | ADC channel 3   |
| В                  | DAC channel 2    | F                     | ADC channel 1   |
| С                  | DAC channel 1    | G                     | ADC channel 2   |
| D                  | DAC channel 3    | н                     | ADC channel 0   |
| Х                  | External trigger | Y                     | Reference clock |

# 3 FMC

The LXD31K4 is an FMC card that targets a high pin count connector. The ADC data is transferred over two 8 bits wide data busses. Each bus carries 2 multiplexed ADC channels. The DAC data is multiplex onto two 16 bit wide data busses.

The card is a high pin count FMC that requires the LA and HA bus. That means it is compatible with FMC carrier boards that do not implement the HB bus.

### 3.1 LA, HA and HB connections

The following table shows the signal connections on the FMC connector.

A signal ending with \_p or \_n indicates the negative and positive signals part of a differential pair. All differential pairs are LVDS signals. The remaining single ended signals are LVCMOS with a voltage rating equal to the power supplied on VADJ.



| AV57          | Con. Pin | LXD30K00                                                           | AV57          | Con. Pin | LXD30K00   |
|---------------|----------|--------------------------------------------------------------------|---------------|----------|------------|
| CLK0_M2C_N    | H5       | DACA_DCI_N                                                         | DP8_M2C_P     | B8       | n.c.       |
| CLK0_M2C_P    | H4       | DACA_DCI_P                                                         | DP9_C2M_N     | B25      | n.c.       |
| CLK1_M2C_N    | G3       | FMC_SPI_SIO<br>(on AC coupled)<br>DACA_FRAME_P<br>(on DC coupled)  | DP9_C2M_P     | B24      | n.c.       |
| CLK1_M2C_P    | G2       | FMC_SPI_SCLK<br>(on AC coupled)<br>DACA_FRAME_N<br>(on DC coupled) | DP9_M2C_N     | B5       | n.c.       |
| CLK2_BIDIR_N  | К5       | BD_8_N                                                             | DP9_M2C_P     | B4       | n.c.       |
| CLK2_BIDIR_P  | К4       | BD_8_P                                                             | GBTCLK0_M2C_N | D5       | n.c.       |
| CLK3_BIDIR_N  | J3       | AD_8_N                                                             | GBTCLK0_M2C_P | D4       | n.c.       |
| CLK3_BIDIR_P  | J2       | AD_8_P                                                             | GBTCLK1_M2C_N | B21      | n.c.       |
| DP0_C2M_N     | C3       | n.c.                                                               | GBTCLK1_M2C_P | B20      | n.c.       |
| DP0_C2M_P     | C2       | n.c.                                                               | HA00_N_CC     | F5       | BD_2_N     |
| DP0_M2C_N     | C7       | n.c.                                                               | HA00_P_CC     | F4       | BD_2_P     |
| DP0_M2C_P     | C6       | n.c.                                                               | HA01_N_CC     | E3       | BD_7_N     |
| DP1_C2M_N     | A23      | n.c.                                                               | HA01_P_CC     | E2       | BD_7_P     |
| DP1_C2M_P     | A22      | n.c.                                                               | HA02_N        | К8       | DACB_D11_N |
| DP1_M2C_N     | A3       | n.c.                                                               | HA02_P        | К7       | DACB_D11_P |
| DP1_M2C_P     | A2       | n.c.                                                               | HA03_N        | J7       | DACB_D13_N |
| DP2_C2M_N     | A27      | n.c.                                                               | HA03_P        | J6       | DACB_D13_P |
| DP2_C2M_P     | A26      | n.c.                                                               | HA04_N        | F8       | DACB_D12_N |
| DP2_M2C_N     | A7       | n.c.                                                               | HA04_P        | F7       | DACB_D12_P |
| DP2_M2C_P     | A6       | n.c.                                                               | HA05_N        | E7       | DACB_D14_N |
| DP3_C2M_N     | A31      | n.c.                                                               | HA05_P        | E6       | DACB_D14_P |
| DP3_C2M_P     | A30      | n.c.                                                               | HA06_N        | K11      | DACB_D08_N |
| DP3_M2C_N     | A11      | n.c.                                                               | HA06_P        | К10      | DACB_D08_P |
| DP3_M2C_P     | A10      | n.c.                                                               | HA07_N        | J10      | DACB_D09_N |
| DP4_C2M_N     | A35      | n.c.                                                               | HA07_P        | J9       | DACB_D09_P |
| DP4_C2M_P     | A34      | n.c.                                                               | HA08_N        | F11      | DACB_D10_N |
| DP4_M2C_N     | A15      | n.c.                                                               | HA08_P        | F10      | DACB_D10_P |
| DP4_M2C_P     | A14      | n.c.                                                               | HA09_N        | E10      | DACB_D15_N |
| DP5_C2M_N     | A39      | n.c.                                                               | HA09_P        | E9       | DACB_D15_P |
| DP5_C2M_P     | A38      | n.c.                                                               | HA10_N        | K14      | DACB_D05_N |
| DP5_M2C_N     | A19      | n.c.                                                               | HA10_P        | K13      | DACB_D05_P |
| DP5_M2C_P     | A18      | n.c.                                                               | HA11_N        | J13      | DACB_D06_N |
| DP6_C2M_N     | B37      | n.c.                                                               | HA11_P        | J12      | DACB_D06_P |
| DP6_C2M_P     | B36      | n.c.                                                               | HA12_N        | F14      | DACB_D04_N |
| DP6_M2C_N     | B17      | n.c.                                                               | HA12_P        | F13      | DACB_D04_P |
| DP6_M2C_P     | B16      | n.c.                                                               | HA13_N        | E13      | DACB_D07_N |
| DP7_C2M_N     | B33      | n.c.                                                               | HA13_P        | E12      | DACB_D07_P |
| DP7_C2M_P     | B32      | n.c.                                                               | HA14_N        | J16      | DACB_D01_N |
| DP7_M2C_N     | B13      | n.c.                                                               | HA14_P        | J15      | DACB_D01_P |
| <br>DP7_M2C_P | B12      | n.c.                                                               | <br>HA15_N    | F17      | DACB_D02_N |

LXD31K4 quad channel MIMO FMC module User manual DM005 - r 1.0

www.logic-x.eu



| DP8 C2M N        | B29       | n.c.                     | HA15 P    | F16 | DACB_D02_P               |
|------------------|-----------|--------------------------|-----------|-----|--------------------------|
| DP8_C2M_P        | B28       | n.c.                     | HA16_N    | E16 | DACB DOD N               |
| DP8_M2C_N        | B20<br>B9 | n.c.                     | HA16_P    | E15 | DACB_DOO_N<br>DACB_DOO_P |
| HA17_N_CC        | K17       | DACB D03 N               | HB15_N    | J34 | n.c.                     |
| HA17_P_CC        | K17       | DACB_D03_P               | HB15_P    | J33 | n.c.                     |
| HA18_N           | J19       | DACB_FRAME_N             | HB16_N    | F35 | n.c.                     |
| HA18 P           | J18       | DACB_FRAME_P             | HB16_P    | F34 | n.c.                     |
| HA19_N           | F20       | DACB_DCI_N               | HB17_N_CC | K38 | n.c.                     |
| HA19 P           | F19       | DACB_DCI_N<br>DACB_DCI_P | HB17_N_CC | K30 | n.c.                     |
| HA20_N           | E19       | BD_5_N                   | HB17_1_CC | J37 | n.c.                     |
| HA20_N<br>HA20_P | E18       | BD_5_P                   | HB18_P    | J36 | n.c.                     |
| HA21_N           | K20       | BD_1_N                   | HB19_N    | E34 | n.c.                     |
| HA21_N<br>HA21_P | K19       | BD_1_P                   | HB19_P    | E33 | n.c.                     |
| HA22_N           | J22       | BD_4_N                   | HB10_N    | F38 | n.c.                     |
| HA22_N<br>HA22_P | J21       |                          | _         | F37 |                          |
| -                |           | BD_4_P                   | HB20_P    |     | n.c.                     |
| HA23_N           | K23       | BD_3_N                   | HB21_N    | E37 | n.c.                     |
| HA23_P           | K22       | BD_3_P                   | HB21_P    | E36 | n.c.                     |
| HB00_N_CC        | K26       | n.c.                     | LA00_N_CC | G7  | AB_CLK_N                 |
| HB00_P_CC        | K25       | n.c.                     | LA00_P_CC | G6  | AB_CLK_P                 |
| HB01_N           | J25       | SYNC_C2M_N               | LA01_N_CC | D9  | BD_0_N                   |
| HB01_P           | J24       | SYNC_C2M_P               | LA01_P_CC | D8  | BD_0_P                   |
| HB02_N           | F23       | n.c.                     | LA02_N    | H8  | FMC_ADCA_SPI_CSN         |
| HB02_P           | F22       | n.c.                     | LA02_P    | H7  | FMC_FPGA0_SPI_CSN        |
| HB03_N           | E22       | n.c.                     | LA03_N    | G10 | BD_6_N                   |
| HB03_P           | E21       | n.c.                     | LA03_P    | G9  | BD_6_P                   |
| HB04_N           | F26       | n.c.                     | LA04_N    | H11 | FMC_DACA_SPI_CSN         |
| HB04_P           | F25       | n.c.                     | LA04_P    | H10 | FMC_ADCB_SPI_CSN         |
| HB05_N           | E25       | n.c.                     | LA05_N    | D12 | AD_3_N                   |
| HB05_P           | E24       | n.c.                     | LA05_P    | D11 | AD_3_P                   |
| HB06_N_CC        | К29       | n.c.                     | LA06_N    | C11 | AD_5_N                   |
| HB06_P_CC        | K28       | n.c.                     | LA06_P    | C10 | AD_5_P                   |
| HB07_N           | J28       | n.c.                     | LA07_N    | H14 | FMC_PLL_SPI_CSN          |
| HB07_P           | J27       | n.c.                     | LA07_P    | H13 | FMC_DACB_SPI_CSN         |
| HB08_N           | F29       | n.c.                     | LA08_N    | G13 | AD_6_N                   |
| HB08_P           | F28       | n.c.                     | LA08_P    | G12 | AD_6_P                   |
| HB09_N           | E28       | n.c.                     | LA09_N    | D15 | FMC_SPI_SIO2             |
| HB09_P           | E27       | n.c.                     | LA09_P    | D14 | FMC_SPI_WNR              |
| HB10_N           | K32       | n.c.                     | LA10_N    | C15 | AD_0_N                   |
| HB10_P           | K31       | n.c.                     | LA10_P    | C14 | AD_0_P                   |
| HB11_N           | J31       | n.c.                     | LA11_N    | H17 | DACA_D13_N               |
| HB11_P           | J30       | n.c.                     | LA11_P    | H16 | DACA_D13_P               |
| HB12_N           | F32       | n.c.                     | LA12_N    | G16 | AD_4_N                   |
| HB12_P           | F31       | n.c.                     | LA12_P    | G15 | AD_4_P                   |
| HB13_N           | E31       | n.c.                     | LA13_N    | D18 | FPGA_CLK_200M_N          |
| HB13_P           | E30       | n.c.                     | LA13_P    | D17 | FPGA_CLK_200M_P          |

LXD31K4 quad channel MIMO FMC module User manual DM005 - r 1.0

www.logic-x.eu



| HB14_N    | K35 | n.c.       | LA14_N | C19 | AD_7_N                                                                 |
|-----------|-----|------------|--------|-----|------------------------------------------------------------------------|
| HB14_P    | K34 | n.c.       | LA14_P | C18 | AD_7_P                                                                 |
|           |     |            | LA15_N | H20 | DACA_FRAME_N<br>(on AC coupled)<br>SPI_ADC_DAC_SDIO<br>(on DC coupled) |
|           |     |            | LA15_P | H19 | DACA_FRAME_P<br>(on AC coupled)<br>SPI_SCLK<br>(on DC coupled)         |
| LA16_N    | G19 | AD_2_N     | LA26_N | D27 | DACA_D06_N                                                             |
| LA16_P    | G18 | AD_2_P     | LA26_P | D26 | DACA_D06_P                                                             |
| LA17_N_CC | D21 | DACA_D15_P | LA27_N | C27 | DACA_D08_N                                                             |
| LA17_P_CC | D20 | DACA_D15_N | LA27_P | C26 | DACA_D08_P                                                             |
| LA18_N_CC | C23 | DACA_D12_N | LA28_N | H32 | DACA_D00_P                                                             |
| LA18_P_CC | C22 | DACA_D12_P | LA28_P | H31 | DACA_D00_N                                                             |
| LA19_N    | H23 | DACA_D09_N | LA29_N | G31 | DACA_D03_N                                                             |
| LA19_P    | H22 | DACA_D09_P | LA29_P | G30 | DACA_D03_P                                                             |
| LA20_N    | G22 | DACA_D10_N | LA30_N | H35 | DACA_D02_N                                                             |
| LA20_P    | G21 | DACA_D10_P | LA30_P | H34 | DACA_D02_P                                                             |
| LA21_N    | H26 | DACA_D07_N | LA31_N | G34 | DACA_D04_N                                                             |
| LA21_P    | H25 | DACA_D07_P | LA31_P | G33 | DACA_D04_P                                                             |
| LA22_N    | G25 | DACA_D14_P | LA32_N | H38 | SYNC_M2C_N                                                             |
| LA22_P    | G24 | DACA_D14_N | LA32_P | H37 | SYNC_M2C_P                                                             |
| LA23_N    | D24 | DACA_D11_N | LA33_N | G37 | AD_1_N                                                                 |
| LA23_P    | D23 | DACA_D11_P | LA33_P | G36 | AD_1_P                                                                 |
| LA24_N    | H29 | DACA_D01_P | SCL    | C30 | SCL                                                                    |
| LA24_P    | H28 | DACA_D01_N | SDA    | C31 | SDA                                                                    |
| LA25_N    | G28 | DACA_D05_N |        |     |                                                                        |
| LA25_P    | G27 | DACA_D05_P |        |     |                                                                        |
|           |     |            |        |     |                                                                        |

### 3.2 Utility connections

The following table shows how the utility connections signals are used on the LXD31K4.



| Signal name | Connected to                                 |
|-------------|----------------------------------------------|
| PRSNT_M2C   | Tied to GND                                  |
| PG_C2M      | Not used                                     |
| ТСК         | Not used                                     |
| TDI         | See chapter on JTAG                          |
| TDO         | See chapter on JTAG                          |
| SCL         | See chapter on I2C                           |
| SDA         | See chapter on I2C                           |
| тмѕ         | Not used                                     |
| TRST_L      | Not used                                     |
| GA0         | See chapter on I2C                           |
| GA1         | See chapter on I2C                           |
| RESO        | Not used                                     |
| PG_M2C      | Asserted directly when the local power is OK |

#### 3.3 Gigabit transceiver connections

The LXD31K4 does not connect any of the Gigabit transceiver connections or reference clocks.

### 3.4 I/O Standard Support

Most of the signal connections to the FMC connector on the LXD31K4 are differential LVDS type of signals. The CMOS control signals are passed through level translators that are powered by VADJ on one the FMC side. This ensures proper operation with VADJ voltages between 1.2 and 3.3V. The VREF signal is not used and not connected.

#### 3.5 VIO\_B\_M2C Support

The LXD31K4 connects VIO\_B\_M2C directly to VADJ.

### 3.6 VREF Support

The LXD31K4 leaves VREF\_A\_M2C and VREF\_B\_M2C unconnected.



### **3.7** Main Characteristics

|                                | Analog inputs                                                                                       |
|--------------------------------|-----------------------------------------------------------------------------------------------------|
| Number of channels             | 4 (A0-A3)                                                                                           |
|                                | 16-bit                                                                                              |
| Channel resolution             |                                                                                                     |
|                                | DC Coupled:<br>+6dBm (max) / 1.25Vp-p DC (50 ohms)                                                  |
| Input voltage range            |                                                                                                     |
| input votuge runge             | AC Coupled:<br>+12dBm (max)/ 1.25Vp-p (50 Ohms)                                                     |
|                                |                                                                                                     |
| Input impedance                | 50Ω                                                                                                 |
| Analog input bandwidth         | DC Coupled: DC -200 MHz<br>AC Coupled: 10 MHz to 465MHz                                             |
|                                | SFDR = 85 dBc, SNR 73.7 dBFS                                                                        |
| Performance (Fin = 170 MHz)    | Typical value provided by Analog devices                                                            |
| Input data rate                | 80 – 310 Msps                                                                                       |
|                                | Analog outputs                                                                                      |
| Number of channels             | 4 (D0- D3)                                                                                          |
| Output voltage range           | DC Coupled: +12 dBm (max) / 2.5Vp-p DC into 50 ohms                                                 |
|                                | AC Coupled: +0 dBm (max.) / 0.632Vp-p into 50 ohms<br>50Ω                                           |
| Load                           | SFDR=85 dBc                                                                                         |
| Performance (Fout = 200 MHz)   | Typical value provided by Analog devices                                                            |
|                                | DC Coupled 310 Msps, x4 interpolation:<br>DC - 145 MHz                                              |
| Analog Bandwidth               |                                                                                                     |
|                                | AC Coupled:<br>10 MHz to 145 MHz                                                                    |
| Digital Sample Rate            | 1.6GS/sec maximum data rate for each DAC with interpolation. Each DAC maximum data rate is 575Msps. |
| Ordensed Jacks Backs           | 80 – 575 Msps                                                                                       |
| Output data Rate               |                                                                                                     |
| E                              | xternal Clock/Reference input                                                                       |
| External Reference Input level | External Reference Clock 0.30 to 2.5Vp-p<br>(-7 to +12dBm) recommended range: +10 to +12dBm.        |
| Input impedance                | 50Ω AC coupled                                                                                      |
| Input range                    | Ext Ref 10-750 MHz                                                                                  |
|                                | External Trigger/Sync input                                                                         |
| Format                         | LVTTL/LVCMOS Compatible 1.25Vdc Threshold                                                           |
| Format                         |                                                                                                     |
| Input impedance                | $10k\Omega$ DC coupled                                                                              |
| Frequency range                | LVTTL & LVCMOS Limited by source                                                                    |
|                                | ADC Output                                                                                          |
| Output data width              | 2 * 8bits LVDS @ 320 - 1240MHz DDR                                                                  |
| Data Format                    | Two's Complement / Offset binary                                                                    |
| Sampling Frequency Range       | 80 – 310 Msps                                                                                       |
|                                | DAC input                                                                                           |
| Output data width              | 2 * 16bits LVDS @ 160- 575 MHz DDR                                                                  |
| Data Format                    | Two's Complement / Offset binary                                                                    |
|                                | 80 – 575 Msps                                                                                       |
| Sampling Frequency Range       | ighter Card Main Characteristics                                                                    |

# 4 Analog input and output

### 4.1 AC coupled

At the analog input and output the LXD31K4 uses a balun coupling for single ended to differential conversion. To make maximum use of the ADC capabilities the balun (ETC1-1-13) from MACOM is used. This balun offers a wide bandwidth from 4.5MHz up to 3000 MHz. Typically, the phase matching is within 2 degrees upto 400 MHz bandwidth. In addition, it has a very flat insertion loss. The nominal insertion loss is 0.7dB.

The DAC output uses the TC2-72T+ balun which offers a bandwidth from .4MHz to 700 MHz The Analog input and output are AC coupled at the connector to limit DC biasing of the transformer.



Figure 3: AC- coupled Analog input schematic



Figure 4: AC-coupled Analog output schematic

### 4.2 DC coupled

There is also a version of the LXD31K4 that has DC coupled inputs and outputs. The high performance Opamp ADA4927 from analog devices is used to translate between single ended and differential. The part has an excellent harmonic distortion which will not negatively impact the ADC and DAC performances. For each channel there is the option to tune the input and output offset to remove any unwanted offsets.

The DAC output gain is set to 5 to allow for a 12 dBm output that matches the ADC input. Please note that the ADC0 and ADC2 inputs as well as the DAC0 and DAC2 outputs are inverting by design.



Figure 5: Differential analog input schematic

| LXD31K4 quad channel MIMO FMC | www.logic-x.eu |        |
|-------------------------------|----------------|--------|
| module User manual            |                |        |
| DM005 - r1.0                  | Public         | - 12 - |



Figure 6: Differential analog output schematic

### 4.3 Input frequency response











#### 4.4 Output frequency response







Figure 10: output power DC coupled

# 5 I2C Interface

The FMC identification EEPROM is connected directly to the FMC I2C signals and is active with only the 3V3\_AUX.

The other devices on the chain are the voltage monitoring devices and an I2C IO expander (PCAL6524HEAZ). The IO expander has 24 bits that can individually be set as input or output. Also, each bit can be configured to latch a state change and generate an interrupt if required. The IO expander signals are used in order to drive the different static control signals and to read back status signals.

The image below depicts the I2C schematic and the device addresses.



Figure 11:I2C schematic



| IO pin   | Direction | Signal name   | Connected to                                         | Function                                                                                                                   |
|----------|-----------|---------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| P0_0     | 0         |               |                                                      | Select external reference                                                                                                  |
|          |           | CLK_REF_MUX   | Reference clock multiplexer                          | (0) or local (1) reference clock for the PLL.                                                                              |
| P0_1     | 0         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| <br>P0_2 | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| <br>P0_3 | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| <br>P0_4 | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| <br>P0_5 | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| <br>P0_6 | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| <br>P0_7 | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| <br>P1_0 | 0         | 1.570         |                                                      | Disable (0) the reference                                                                                                  |
| _        |           | 3V3_REF_EN    | Connects to the Reference clock power supply.        | clock when not used to<br>avoid interference from<br>this clock.                                                           |
| P1_1     | 0         | VCC_5VA_EN    | 5VA regulator and minus 5V for the DC coupled board. | Setting this pin to 1<br>enables the 5VA<br>regulators                                                                     |
| P1_2     | 0         | VCC_ANALOG_EN | Connects to the 3V3A and 1V8A regulators             | Setting this pin to 1<br>enables the 1V8A and<br>3V3A power supplies.                                                      |
| P1_3     | 0         | VCC_FPGFA_EN  | Connects to the 1V0, 2V5 and 1V8D regulators         | Setting this pin to 1<br>powers up the entire<br>FPGA voltage rails                                                        |
| P1_4     | 0         | VCC_SWITCH_EN | Connects to the first stage switching regulators.    | Setting this bit to 1<br>enables the switching<br>regulators that enable the<br>intermediate 3V5, 5V2<br>and 2V0 voltages. |
| P1_5     | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| P1_6     | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| P1_7     | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| P2_0     | 1         | PG_REF        | Reference Clock power good                           | REF clock power is good                                                                                                    |
| P2_1     | I         | PG_5VA        | 5VA power good                                       | 5VA power is good                                                                                                          |
| P2_2     | I         | PG_3V3A       | 3V3A power good                                      | 3V3A power is good                                                                                                         |
| P2_3     | 1         | PG_1V8A       | 1V8A power good                                      | 1V8A power is good                                                                                                         |
| P2_4     | I         | PG_FPGA       | 1V0, 2V5 and 1V8D power good                         | FPGA power is good                                                                                                         |
| P2_5     | 1         | PG_SWITCH     | The first stage switching power supplies             | If asserted high if both<br>switching regulators are<br>OK                                                                 |
| P2_6     | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
| P2_7     | -         | RSVD          | RSVD                                                 | reserved                                                                                                                   |
|          |           | 1             |                                                      |                                                                                                                            |

# 6 SPI Interface

The PLL, ADC, DAC and FPGA devices connect to the same SPI bus. They can be individually selected by asserting their respective CSN signal. The SCLK signal is buffered and level translated in a way that each device receives its own clock. The SIO signal is also buffered and level translated. A dedicated direction control signal should be provided by the FMC connector to set the direction of the buffer correctly.

On the DC coupled board there is also an LTC2666 octal DAC device that is used to change the DC-offset of the analog inputs and outputs. This device is controlled through the local FPGA. Please refer to chapter 9.2 for details on communicating with the LTC2666 device over SPI.



Figure 12: SPI architecture

The maximum SPI configuration clock frequency is 10 MHz.

# 7 External IO and synchronisation

On the front panel there is one MMCX that can be used for external trigger/synchronization or as general-purpose IO. The signal is buffered and connected to the local spartan 7 device. Also connected to the spartan7 are the SYNC ports of the two DAC devices and the SYNC port of the PLL. The spartan 7 includes a cross bar that allows the user to select any of 4 options for each sync output. The options are:

- EXT\_IO
- SYNC\_C2M
- Logic 0
- Programmable pulse based on SPI command.

The EXT\_IO signal has the following 4 options

- INPUT
- SYNC\_C2M
- Logic 0
- Programmable pulse based on SPI command.

In case the EXT\_IO is set to INPUT the spartan 7 will float the EXT\_IO signal. In the other cases it will drive a logic 0 or the value of the SYNC\_C2M or a programmable pulse to the EXT\_IO pin. All selections are done through the spartan 7 register map that are accessible through SPI.





Figure 13: External IO and synchronisation schematic

### 8 Clock tree

Providing a very clean and stable clock is important for ADC and DAC devices. Therefore, special care is taken on the LXD31K4 to generate a very clean low jitter and low phase noise clock that is distributed to the ADC and DAC. The next image shows the LXD31K4 clock tree architecture.



Figure 14: LXD31K4 clock tree architecture

### 8.1 Local clock generator

For the local clock a the LTC6951 device is used. This is a low-noise, wideband PLL with integrated VCO that supports a frequency range from 1.95 MHz to 2.5 GHz. The device supports integer-N modes. The device supports easy synchronization of multiple LXD31K4 boards to the same reference clock.

#### 8.1.1 Local reference clock

For maximum stability, a low phase noise reference oscillator from Crystek is used (CCHD-575-50-100.000). This oscillator has a phase noise performance that outperforms the PLL.

#### 8.1.2 External reference clock

A wide band RF switch (SKY13453-385LF) with low insertion loss is used to select between the local reference oscillator and a user provided reference clock. The reference clock can be provided on the MMCX input connector.

| LXD31K4 quad channel MIMO FMC | www.logic-x.eu |        |
|-------------------------------|----------------|--------|
| module User manual            |                |        |
| DM005 - r1.0                  | Public         | - 18 - |

#### 8.1.3 PLL loop filter design

With the design tool from linear technologies the loopfilter components are determined to work with a 100 MHz reference and 300 MHz ADC clock and 600 MHz DAC clock. The next image shows the loop filter design and the required part values.



Figure 15: PLL loop filter design

### 8.2 External clock

The board only supports an external reference clock. Multi board synchronization is achieved by providing a common reference clock and an external trigger to SYNC the PLL and DAC dividers.

# 9 Multiplexing, Sync and external IO

In order to reduce the required number of signals towards the FMC connector the ADC data channels will be multiplexed using a Spartan 7 FPGA. Besides the multiplexing there is also the trigger and sync logic implemented in the FPGA. The following image shows the block diagram of the functionality implemented in the FPGA.



Figure 16: ADC data multiplexer top level diagram

### 9.1 Data format multiplexed data stream

The data stream between the LXD31K4 and the FMC connector is depicted in the following figure.



Figure 17: ADC data to FMC data multiplexing.

The time tmux has a constant value of TBD after a SYNC\_DATA\_PATH is provided. The data rate on the data bus going to the FMC connector is twice as fast as the data rate on the data bus from the ADC device. That means the data rate is 4 times the ADC sample rate. With a 310 Msps the FMC data rate will be 1240 Msps.

In order to have a reliable data transfer it is advised to implement a training logic inside the carrier board FPGA. To facilitate the training, it is possible to select a training pulse for the FMC data bus. This pattern is a repeating pulse with the value of 0XFF followed by 10 times 0x00. The pattern is shown in the following table.

| Pattern<br>index | DATA[7:0] | Pattern<br>index | DATA[7:0] |  |
|------------------|-----------|------------------|-----------|--|
| 1                | OxFF      | 6                | 0x00      |  |
| 2                | 0x00      | 7                | 0x00      |  |
| 3                | 0x00      | 8                | 0x00      |  |
| 4                | 0x00      | 9                | 0x00      |  |
| 5                | 0x00      | 10               | 0x00      |  |
|                  |           | 11               | 0x00      |  |



The receiving FPGA can implement logic to increment the input delay per IO pin and detect the edges and find the ideal sample window. The board support package includes the training logic and is delivered as open VHDL.

#### 9.2 FPGA SPI interface

The serial port interface allows the user to read status information and configure the multiplexer data source and configure the trigger and sync logic.

Three pins define the SPI of the FPGA the SPI\_SCLK pin, the SPI\_SDIO pin, and the SPI\_CSN pin. The SCLK (serial clock) pin synchronizes the read and write data presented from/to the FPGA. The SDIO (serial data input/output) pin is a dual-purpose pin that allows data to be sent and read from the internal FPGA memory map registers. The CSN (chip select not) pin is an active low control that enables or disables the read and write cycles. The following figure shows the timing diagram of the SPI interface.



Figure 18: FPGA SPI interface timing

All transactions start with a 16-bit word. The first bit of the serial data indicates whether a read (1) or write (0) command is issued. This allows the serial data input/output (SDIO) pin to change direction from an input to an output.

For the DC coupled boards the next 3 bits (A14-A12) select the target for the SPI transaction 000 -> target is FPGA

101 -> target is LTC2666 offset DAC.

The remaining bits are used as address for the FPGA or for the LTC2666. During write commands the first 16 bits should be followed with a 32 bits data word. During reads the FPGA will output a 32 bits data word.

The SPI register map is described in the next table.

#### Table 2: FPGA SPI register map

| Address | Name         | Description                                                                                           |
|---------|--------------|-------------------------------------------------------------------------------------------------------|
|         |              | Bit 2:IO reset = 1 causes a synchronization of the input and output                                   |
|         |              | logic of the MUX.                                                                                     |
|         |              | Bit 3: sim reset = 1 causes the ramp counter to reset to 0                                            |
|         |              | Bit 4: FIFO reset = 1 causes the FIFOs to reset to align the A en B                                   |
|         |              | data streams.                                                                                         |
|         |              | All bits are self clrearing                                                                           |
| 0x0050  | MUX command  |                                                                                                       |
|         |              | Bit 3:0:AD data_select 0= ADCA data, 1= 16 bits ramp, 2=training pulse, 3=flash between 0xFF and 0x00 |
|         |              | Bit 7:4:BD data_select 0= ADCB data, 1= 16 bits ramp,                                                 |
| 0x0054  | MUX control  | 2=training pulse, 3=flash between 0xFF and 0x00                                                       |
|         |              | Bit 0: Software trigger =1 will generate a software trigger to those                                  |
| 0x0070  | SYNC command | outputs that are listening to the software trigger.                                                   |
|         |              | Bit [1:0]:dacA_sync source 0=external IO, 1=sync_c2m,                                                 |
|         |              | 2=software trigger, 3 = 0                                                                             |
|         |              | Bit [3:2]:dacB_sync source 0=external IO, 1=sync_c2m,                                                 |
|         |              | 2=software trigger, 3 = 0                                                                             |
|         |              | Bit [5:4]:pll_sync source 0=external IO, 1=sync_c2m,<br>2=software trigger, 3 = 0                     |
|         |              | Bit [9:8]:SYNC_M2C source 0=external IO, 1=sync_c2m,                                                  |
|         |              | 2=software trigger, 3 = 0                                                                             |
|         |              | Bit [11:10]:extio_source (only if external IO is set to output)                                       |
|         |              | 0=toggle 0/1, 1=sync_c2m, 2=software trigger                                                          |
| 0x0074  | SYNC control | Bit [12]:external IO direction 0= input, 1 = output                                                   |
|         |              | Bit[31:0] trigger duration in CLK_200M counts. Set the amount of                                      |
|         | SYNC trigger | clock cycles the trigger is pulsed high after receiving a software                                    |
| 0x0078  | duration     | trigger command.                                                                                      |

# **10 Power Supply**

An FMC board receives several voltages from the FMC connector. These are 12V, 3V3, VADJ and 3V3\_AUX. The LXD31K4 uses all these supplies. The following table shows the typical power consumption and current draw of the LXD31K4 on the different voltage rails.

Table 3: Power consumption AC coupled version

| Voltage Rail                             | Typical<br>Current (A) | Typical<br>Power (Watts) |
|------------------------------------------|------------------------|--------------------------|
| VADJ                                     | 0.49                   | 0,4 @ 1.8V               |
| 3P3V                                     | 2.88                   | 9.5                      |
| 12P0V                                    | 0.23                   | 2.8                      |
| 3P3VAUX (Operating)<br>3P3VAUX (Standby) | 0.010<br>0.000001      | 0.033<br>0.0000033       |

| Table 4: Pow | er consumption | DC coupled | version |
|--------------|----------------|------------|---------|
|--------------|----------------|------------|---------|

| Voltage Rail                             | Typical<br>Current (A) | Typical<br>Power (Watts) |
|------------------------------------------|------------------------|--------------------------|
| VADJ                                     | 0.21                   | 0,4 @ 1.8V               |
| 3P3V                                     | 2.88                   | 9.5                      |
| 12P0V                                    | 0.53                   | 6.4                      |
| 3P3VAUX (Operating)<br>3P3VAUX (Standby) | 0.010<br>0.000001      | 0.033<br>0.0000033       |



### **10.1** Power supply control

Through the I2C IO expander the carrier board FPGA can independently enable the power for the FPGA, Analog powers, and reference clocks. By default all the powers are disabled at power-up. Appendix A describes how to powerup the FMC.

# **11 Health monitoring**

#### **11.1 Requirements and handling instructions**

- The LXD31K4 must be installed on an FMC carrier board compliant to the VITA 57.1 standard.
- Do not flex the board
- Observe ESD precautions when handling the board to prevent electrostatic discharges.
- Do not install the LXD31K4 while the FMC carrier board is powered up.

#### **11.2 Temperature**

Operating temperature

- -0°C to +70°C (Commercial)
- -40°C to +85°C (Industrial)

Storage temperature:

-40°C to +120°C

#### **11.3 Cooling**



The air flow provided by the fans of the chassis the LXD31K4 is enclosed in will dissipate the heat generated by the onboard components. A minimum airflow of 300 LFM is recommended. For standalone operations (such as on a Xilinx development kit), it is highly recommended to blow air across the FMC to ensure that the temperature of the devices is within the allowed range. Warranty does not cover boards on which the maximum allowed temperature has been exceeded. Optionally, a heatsink with or without fans can be ordered for the LXD31K4. Contact sales for this option.

### **11.4 Monitoring**

The LXD31K4 uses two AD7291 '8-channel I<sup>2</sup>C 12-bit SAR ADCs with temperature monitor' devices for monitoring power supply voltages. The device can be programmed and read through the I<sup>2</sup>C bus at the address defined in chapter 5. The following steps are required to control the AD7291 devices.

1) At power-up, the firmware should write a '1' to the Reset bit in the Command Register to initialize the part to a known state.

| LXD31K4 quad channel MIMO FMC | <u>www.logic-x.eu</u> |        |
|-------------------------------|-----------------------|--------|
| module User manual            |                       |        |
| DM005 - r 1.0                 | Public                | - 23 - |

- 2) All measured values must be multiplied by a constant to convert to the actual analog level, formulas are included in the associated tables and text.
- 3) Continuously operating the I<sup>2</sup>C bus might interfere with the A/D conversion process resulting in signal distortion. It is recommended to program the minimum and maximum thresholds in the monitoring device and only read from the device when the interrupt line is asserted

#### 11.5 Monitor 1

The first device is configured to monitor the voltages shown in the table below. To convert the ADC reading to voltage multiply the ADC value by the scaling factor listed in the table.

| Parameter:  | Voltage                      | Formula                       |
|-------------|------------------------------|-------------------------------|
| Channel 0   | GND                          | Measured value*(2.5/4096.0)*1 |
| Channel 1   | VCCA_2V0                     | Measured value*(2.5/4096.0)*1 |
| Channel 2   | GND                          | Measured value*(2.5/4096.0)*1 |
| Channel 3   | VCCA_5VA                     | Measured value*(2.5/4096.0)*3 |
| Channel 4   | VCCD_3V5                     | Measured value*(2.5/4096.0)*2 |
| Channel 5   | VCC_3V3                      | Measured value*(2.5/4096.0)*2 |
| Channel 6   | VCC_VADJ                     | Measured value*(2.5/4096.0)*2 |
| Channel 7   | VCC_2V5                      | Measured value*(2.5/4096.0)*2 |
| Temperature | Internal temperature monitor | Measured value/4.0            |

Table 5: first AD7291 Voltage Parameters

#### **11.6 Monitor 2**

The second device is configured to monitor the voltages are shown in the table below. To convert the ADC reading to a voltage or temperature multiply the ADC value by the scaling factor listed in the table.

| Parameter:  | Voltage     | Formula                       |
|-------------|-------------|-------------------------------|
| Channel 0   | VCC_1V0     | Measured value*(2.5/4096.0)*1 |
| Channel 1   | VCC_1V8A    | Measured value*(2.5/4096.0)*1 |
| Channel 2   | VCCD_12V    | Measured value*(2.5/4096.0)*6 |
| Channel 3   | VCCO_3V3    | Measured value*(2.5/4096.0)*2 |
| Channel 4   | VCC_3V3A    | Measured value*(2.5/4096.0)*2 |
| Channel 5   | VCC_1V8D    | Measured value*(2.5/4096.0)*1 |
| Channel 6   | VCC_3V3_REF | Measured value*(2.5/4096.0)*2 |
| Channel 7   | VCC_5V3     | Measured value*(2.5/4096.0)*3 |
| Temperature | Temp Mon2   | Measured value/4.0            |

Table 6: second AD7291 Voltage Parameters

# 12 Safety

This module presents no hazard to the user.

# **13 EMC**

This module is designed to operate within an enclosed host system built to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate host system. This module is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the system.



# **14 Board support package**

Logic-X has a board support package targeting the KCU105 and VCU118 that includes VHDL based Vivado IP blocks that have an AXI lite configuration interface and AXI stream data interfaces. The following IP is included:

- the input IO deserialization and IODELAY training
- output IO serialization
- Configurable spi master to target all the SPI devices on the LXD31K4
- I2C master
- Data capture IP
- Data playback/waveform generation IP
  - TCP/IP offload engine to AXI lite and AXI stream input and output.

In addition to the FPGA IP it comes with a windows based software application that takes care of all the initialisation of the different devices on the LXD31K4. The software communicates with the carrier board FPGA over TCP/IP. After the initialisation the software will configure the wave form generator to playback several different frequencies out over the DAC outputs. At the same time 32 KB snapshots are recorded on the ADC inputs using the Data capture IP. The received data is then stored in a file for further analysis.

On request Logic-X can port the design to other Xilinx FPGA platforms.





| Reference application APP |       | ор     |
|---------------------------|-------|--------|
| Logic-X abstraction layer | LX_IF |        |
| driver                    | XDMA  | TCP/IP |

Figure 20:Reference application software layers



### Appendix A: Enable LXD31K4 powers

Through the I2C IO expander the carrier board FPGA should enable the power of the LXD31K4. By default, all the powers are disabled at power-up.

To power up the FMC board the following steps should be taken:

- Write 0x01 to IOexpander P0 output register.
  - Select local reference clock.
- Write 0x00 to IO expander P1 output register.
  all power disabled.
- Write 0x0 to IO expander P2 output register.
  - $\circ$  Set all pins to 0.
- Write 0x00 to IOexpander P0 control to set all outputs.
- Write 0x00 to IOexpander P1 control to set all outputs.
- Write 0x3F to IOexpander P2 control to set [5..0] to inputs and [7..6] to outputs.
- Write 0x10 to IO expander P1 output register. • Enable Switching regulators.
- Write 0x1F to IO expander P1 output register.
  - Enable all powers.

### **Appendix B: PLL configuration**

Below is a table with the register values to write to the PLL that shows configures the PLL to 250 Mhz towards the ADCs, 1000 MHz towards the DAC and 500 MHz towards the FPGA. The PLL will use the local 100 MHz reference clock. For this configuration to work the reference clock mux should be set to Local. Also, reference power supply should be enabled. The registers should be written in the order of the index.

| Index | SPI address: | Data to write |
|-------|--------------|---------------|
| 1     | 0x02         | 0x02          |
| 2     | WAIT 1 ms    |               |
| 3     | 0x03         | 0x38          |
| 4     | 0x04         | 0xb3          |
| 5     | 0x05         | 0x04          |
| 6     | 0x06         | 0x32          |
| 7     | 0x07         | 0x07          |
| 8     | 0x08         | 0x20          |
| 9     | 0x09         | 0x83          |
| 10    | 0x0a         | 0x00          |
| 11    | 0x0b         | 0x83          |
| 12    | 0x0c         | 0x00          |
| 13    | 0x0d         | 0x81          |
| 14    | 0x0e         | 0x00          |
| 15    | 0x0f         | 0x81          |
| 16    | 0x10         | 0x00          |
| 17    | 0x11         | 0x82          |
| 18    | 0x12         | 0x00          |

#### Table 7: PLL configuration table.



# **Appendix C: ADC configuration**

Below is a table with the typical initialization sequence to configure the ADC for binary data output at 250 MHz.

Before running this sequence there should be a valid clock for the ADC.

| Index | SPI address: | Data to write |
|-------|--------------|---------------|
| 1     | 0x00         | 0x20          |
| 2     | 0x20         | 0x01          |
| 3     | 0x14         | 0x00          |
| 4     | 0xFF         | 0x01          |

#### Table 8: ADC configuration table.

# **Appendix D: DAC configuration**

Below is a table with the typical initialization sequence to configure the DAC for times 4 interpolation and binary data input at 250 MHz. Before running this sequence there should be a valid clock for the ADC.

| Index | SPI address: | Data to write |
|-------|--------------|---------------|
| 1     | 0x00         | 0x3A          |
| 2     | 0x20         | 0x01          |
| 3     | 0x5E         | 0x00          |
| 4     | 0x5F         | 0x60          |
| 5     | 0x0A         | 0x00          |
| 6     | 0x28         | 0x02          |
| 7     | 0x26         | 0x80          |
| 8     | 0x25         | 0x01          |
| 9     | 0x01         | 0x00          |

#### Table 9: ADC configuration table.

### **Appendix E: FPGA IO training**

Below is a table with the typical initialization sequence to train the FPGA IOs. The LXD31K4 BSP includes VHDL that takes care of the IO training.

| Index | Action                                                         | Interface |
|-------|----------------------------------------------------------------|-----------|
| 1     | Make sure the ADC and PLL are<br>configured                    |           |
| 2     | Reset the FPGA IO on the LXD31K4                               | SPI       |
| 3     | Reset the FPGA FIFOs on the LXD31K4                            | SPI       |
| 4     | Set the data pattern for AD an AB to training pules            | SPI       |
| 5     | Reset the carrier board FPGA IO delays and input deserialisers |           |
| 6     | Optionaly increment the IO delay to a start position           |           |
| 7     | Start the IODELAY training in the<br>carrier board FPGA        |           |
| 8     | Verify if IO delay training completed successfully.            |           |
| 9     | Switch the AD and BD data source to ramp                       | SPI       |
| 10    | Verify if you receive a proper ramp                            |           |
| 11    | Set AD and BD data source to ADC data                          | SPI       |

#### Table 10: ADC configuration table.



# **Appendix F: Revision history**

| Document<br>Revision | Changes       |  | Quality<br>Approval | Date           |
|----------------------|---------------|--|---------------------|----------------|
| R1.0                 | First release |  | EBa                 | August 31 2021 |
|                      |               |  |                     |                |
|                      |               |  |                     |                |
|                      |               |  |                     |                |
|                      |               |  |                     |                |
|                      |               |  |                     |                |